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This paper is concerned with the three-dimensional potential Vq= 
"r/crZ(2ao/r-q~a2/r 2 sin 2 0)Co which comprises as particular cases the ring- 
shaped potential (q = 1) and the Coulomb potential (q = 0). The Schr6dinger 
equation for the potential Vq is transformed via a nonbijective canonical 
transformation, viz., the Kustaanheimo-Stiefel transformation, into a coupled 
pair of Schr6dinger equations for two-dimensional harmonic oscillators with 
inverse-square potentials. As a consequence, the discrete spectrum for the 
potential Vq is obtained in a straightforward way. A special attention is paid 
to the case q = 0. In particular, the coupled pair of Schr/Sdinger equations for 
two-dimensional harmonic oscillators is tackled in the situations where the 
spectrum for the potential Vo is discrete, continuous, or reduced to the zero 
point. Finally, some group-theoretical questions about the potential Vq are 
mentioned as well as a connection, via the Kustaanheimo-Stiefel and the 
Levi-Civita transformations, between the quantum-mechanical problems for 
the potential Vq and the Sommerfeld and Kratzer potentials. 

Key words: Coulomb, Kratzer, Sommerfeld, and Hartmann potentials--  
canonical transformations 



32 M. Kibler and T. N6gadi 

1. Introduction 

We consider in this paper the three-dimensional potential 

where q is a real (dimensionless) parameter. The potential defined by Eq. (1) 
constitutes a slightly modified form of the ring-shaped potential introduced by 
Hartmann [1,2] and further worked out by Hartmann and coworkers [3-5]. 
Indeed, the Hartmann potential corresponds to the case q = 1. The potential 
(energy) Vq is a function of the ordinary spherical coordinates r and 0 and does 
not present the spherical symmetry except for the case q = 0. In Eq. (1), ao stands 
for the radius of the first Bohr orbit, eo the energy of the ground level of the 
hydrogen atom, and ~7 and o- are two positive real (dimensionless) parameters 
the values of which range from about 1 up to 10 in problems of chemical interest 
[5]. In the particular case q = 0, Eq. (1) gives the potential energy of a hydrogenlike 
atom with nucleus charge Ze provided we take 77o -2= Z. Consequently, Eq. (1) 
makes it possible to describe both the hydrogen atom potential (case Vo with 
~cr 2 = 1) and the Hartmann potential (case V~). Note that, however, the parameter 
q is not really necessary to obtain the Coulomb potential as a limiting case of 
the Hartmann potential [4]. 

The Schr6dinger equation for a particle in the ring-shaped potential V~ has been 
solved by using standard polynomial methods [1, 2, 5] and equally well by using 
the so-called Kustaanheimo-Stiefel (KS) transformation [6]. Of course, the 
Schr6dinger equation for a particle in the potential Vo admits eigenvalues and 
eigenfunctions that are essentially the ones related to the Coulomb problem. It 
is one of the aims of this paper to achieve a unified quantum-mechanical treatment 
of Vo and VI, i.e. a treatment of Vq, by means of the KS transformation. 

The KS transformation was introduced by Kustaanheimo and Stiefel [7], as an 
extension of the (conformal) Levi-Civita transformation, for the regularisation 
of the Kepler problem. This transformation was independently considered by 
Ikeda and Miyachi [8] in the framework of a unified treatment of the four- 
dimensional isotropic harmonic oscillator, the three-dimensional hydrogen atom, 
and the three-dimensional spherical rotator. The KS transformation corresponds 
to a surjection of the four-dimensional Euclidean space R 4 into the three- 
dimensional physical space R 3 and gives rise, from a quantum-mechanical view- 
point, to a nonbijective canonical transformation [7-9]. Such a canonical transfor- 
mation permits to convert an eigenvalue problem in R 3 into an eigenvalue problem 
in R 4 subjected to a constraint condition. The interest in the KS transformation 
for theoretical physics has been continuously growing in recent years. The KS 
map has been used to connect various quantization cases in the language of either 
the Schr6dinger equation [8-17] or the Feynman path integral [11, 18, 19]. 
Furthermore, the relevance of the KS bundle for a complete geometrical descrip- 
tion of the magnetic monopole of Wu-Yang [20] and for a characterisation of a 
new class of instantons [21] has been recently underlined. The KS transformation 
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has been also introduced in quantum chemistry. In fact, this transformation has 
been used in a study of the hydrogen atom via the path integral formalism [22]. 
In addition, the authors have shown in a short communication [6] how the KS 
transformation allows to transform the Schr6dinger equation for the Hartmann 
potential V1 into a coupled pair of Schr6dinger equations for two-dimensional 
harmonic oscillators with inverse quadratic potentials supplemented by two 
constraint equations. 

A second goal of  this work is to further contribute to the penetration of the KS 
transformation in theoretical chemistry. Therefore, this transformation is intro- 
duced in Sect. 2 in a way that amalgamates results taken from Refs. [7] and [8]. 
Sect. 3 deals with the treatment of the Schr6dinger equation for the potential Vq 
with the help of the KS transformation. As a last motivation of this paper, we 
want to render precisely the connection between the Kepler and harmonic 
oscillator (quantum-mechanical) problems recently revisited in Ref. [14]. In this 
regard, the Schr6dinger equation for the particular case of the potential Vo is 
investigated in Sect. 4 by means of the KS transformation. Finally, in Sect. 5 
some group-theoretical considerations and an unexpected connection between 
the Hartmann and the Kratzer and Sommerfeld potentials are pointed out. 

2. The KS transformation 

We proceed by looking for a matrix of SOd x R +, i.e. a d x d real matrix A(u)  
whose elements are linear and homogeneous functions of u, �9 R (a  = 1, 2 , . . . ,  d) 

a 
such that its rows and columns are orthogonal and have the norm ( ~ = ,  u]) '/2. 
According to a theorem by Hurwitz, this problem has solutions only for d = 1, 2, 4, 
and 8. Indeed, such a problem may be connected to the product of two numbers 
(real numbers for d = 1, complex numbers of Cardan and Girard for d = 2, 
quaternionic numbers of Hamilton for d = 4, and octonionic numbers of Cayley 
for d = 8). The case d = 2 corresponds to the so-called Levi-Civita transformation 
and d = 4 to the KS transformation [7]. 

We limit ourselves to the case d = 4. The solution of the corresponding problem 
is given (up to row, column, and $4 permutations) by 

I~3 --U4 Ul 1 - -  ~2 

A(u)  = U4 U3 U2 Ul 

Ul U 2 - -  U3 - - U  4 " 

U 2 - -  U 1 - -  U 4 U 3 

(2) 

Following Kustaanheimo and Stiefel [7], we now consider 

mdm] F2(u3du,-u4du2+u, du3-u2du4) -] 
u4'~ +u ,,u2+l/2 d. 3-~.1 du4) / 

/au3/ / tu, au, +u= au=- u3 a . . -  u4 d.4)/ 
kdu4J L2(u2 du t - ul du2-  t l  4 d u  3 + u 3 d u 4 ) d  

(3) 



34 M. Kibler and T. N6gadi 

which can be rewritten as 

'a,>l:::l= I d(.~l + U~- U~- .~4) 
[_du4_J [ _ 2 ( u  2 du 1 - u I d u 2 - 1 l  4 du 3 + u 3 du4) 

so that the first three entries of the column-matrix (4) are seen to be total 
differentials. Then, we put 

X = 2(/ , /11/3 - -  U 2 U 4 )  

y =  2(UlU4 +U2U3) ( 5 )  

2 2 
Z = U l  2 q- U 2 - -  U 3 - -  U 4 

which coincides with Eq. (A.1) in Ref. [8] and constitutes a rewriting, up to $3 
(on the labels x, y, z) and $4 (on the labels u,, u2, u3, u4) permutations, of Eq. 
(6) in Ref. [7]. Further, the last entry in the column-matrix (4) is not a total 
differential and we follow Kustaanheimo and Stiefel [7] by requiring 

U 2 dul - u] d u z -  u 4 du3 + u  3 du4 = O. (6) 

The KS transformation is therefore the R 4-'> R 3 surjection defined by relations 
(5) supplemented by the constraint condition (6). Following Ikeda and Miyachi 
[8], we note that the KS transformation may be parametrized as 

0 ~ + ~  
Ul='ffrrc~ cOs 2 ' 

- 0 ~ + q ,  
u 2 = ~ / r c o s ~ s i n  2 ' 

0 ~0-___~ 
u 3 = 4 r s i n ~ c o s  2 ' 

(7) 

0 ~ -____~ 
U 4 = f r  sin ~ sin 2 ' 

since this (Cayley-Klein) parametrization, well-known in the study of R 4, by the 
aid of  Eq. (5) leads to the spherical coordinates of R3: 

x = r sin 0 cos ~0, 

y = r sin 0 sin ~o, 

z =  r cos 0. 

(8) 

We close this section by giving some properties to be used in the next section. 

Property l. We have 

r = ( x 2 + y 2 + z 2 ) 1 / 2 =  ulZ+u2+u32 2+u] .  (9) 
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Property 2. We have 

dx2 + dy2 + dz2=4r(  du2 + du2 + du32 + dua).2 (10) 

Property 3. We have 

3 

3x 

3 

= A(u)  
3 

3z 

• 
2r 

where the operator 

auJ I 
3 I 

-I 3u 2 

o__1 
(11) 

3 3 0 0 
X = u 2 - - -  u 1 - -  (12) 

OU 1 Oil 2 U4OU~3+U3c~U-"" 4 

turns out to be the infinitesimal operator of a subgroup of type U1 ~ S02 of the 
group 04 that leaves the form u~ + u 2 + u~ + u42 invariant. 

Property 4. As a corollary of Property 3, we can express the three-dimensional 
Laplacian A as 

A= A , -  X 2 (13) 

in terms of the four-dimensional Laplacian A u and the operator X. 

3. The Vq potential  

We start from the three-dimensional Schr6dinger equation 

Aa~ q-~2~ [ E  _ r]o-2(~-~_ q r ] ~ )  eo]Xtt = 0 (14) 

for the potential energy Vq. By using Property 4 and Eqs. (5) and (8), Eq. (14) 
may be transformed into 

1 2 21z [ 2 
A , ~ - r  X W +-~f [-8rio- aoeo +4Er 

1 1 
+q ~ + ~  

(15) 

Following the line of reasoning adopted in Ref. [6], we take X ~ = 0  in 
order that the wave function �9 is a univalued function of the coordinates 
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u~(a = 1, 2, 3, 4). Consequently, Eq. (15) can be replaced by the system 

0q* 0'It 0xI* axI* 
u l T - - - u 2 7 -  . . . .  0, (16) 

OU 2 OU 1 U3 0U4-t-U4 0u3 

2t* 2 2 
AuxI* +~-[-8~7o" aoeo+4E(ul +u~ +u~ +u]) 

[ 1 1 ~ 2 2 2  "] 
+ q [ - s s ~ ,  2 + ~ ] n  o- aoeo/q*=0.  (17) 

\ U l t U  2 /,/3"t-/,/4,/ ..1 

We therefore have the result: 

Result 1. The Schr6dinger equation (Eq. (14)) for the potential Vq is equivalent 
to the SchrSdinger equation (Eq. (17)) for a four-dimensional nonharmonic 
oscillator with the energy -8~7o-2a0eo accompanied by a constraint condition 
(eq. (16)). 

Proceeding as in Ref. [6], we use the d'Alembert method of separation of variables 
by trying a solution of the type 

qr = f (ub  u2)g(u3, u4). (18) 

Then, both Eqs. (16) and (17) may be separated. This leads to the system 

O2f 02f 2tz. 
2 +-2--5 + ,-;5-[a +4E(u2+u 2) +q~TZo-2a2eo(U~+U22)-l]f=O, (19) 

OU 1 OU 2 l'l 

02g 02g 2/* 2 2 2 2 
0u~ +7~u] + ~ [ / 3  +4E(u~ + u]) + qn o" aoeo(U3 + u])-l]g = 0, (20) 

a +/3 = -8~cr2aoeo, (21) 

Of of = y f  (22) 
u, ouT- % 

Og Og 
u3 . . . .  Yg, (23) 

OU 4 U4 0U3 

where oe, /3, and 3' denote separation constants. Eqs. (19) and (20) exhibit the 
same structure and correspond to the SchriSdinger equation for a two-dimensional 
harmonic oscillator with an inverse-square potential. Hence, Result 1 can be 
further precised by the result: 

Result 2. The Schr6dinger equation (Eq. (14)) for the potential Vq is equivalent 
to the set of (i) a pair of Schr6dinger equations (Eqs. (19) and (20) connected 
by Eq. (21 )) for two two-dimensional isotropic harmonic oscillators with isotropic 
inverse-square potentials and (ii) a pair of constraint conditions (Eqs. (22) and 
(23)). 

The system of Eqs. (19)-(23) may he solved for E < 0  and q > 0  in exactly the 
same way as the corresponding system with q = 1 in ReE [6]. It is thus possible 
to derive the discrete values of E from the system (19)-(23). As a net result, we 
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obtain that the energy E is given by the formula 

E = (n 2o41 N2) eo (24) 

where N has the form 

N = (m 2 + q~)2o-2)1/2 + nr + n'r + 1 

m =0,  +1, + 2 , . . .  (25) 

n r=0 ,  1 , 2 , . . .  

n'r = 0, 1 , 2 , . . . .  

(The quantum numbers m, n,, and n'r have been defined in Ref. [6]. For a full 
understanding of what follows it is enough to note their range of variation.) For 
N and Iml fixed, i.e. for a fixed value of 

n = N -  [(m 2 q- q~20"2)1/2--Iml], (26) 

the number of corresponding wave functions is equal to the number of values 
taken by nr and n'r with the restriction that n~ + n'~ has a fixed value. From ordinary 
combinatorics, this number is seen to be n -  Iml, a result that coincides with the 
one obtained in Ref. [5] for the potential V1. 

In the particular case where q = 1, Eqs. (24) and (25) are in complete agreement 
with the corresponding results in Refs. [1, 2, 5]. In addition, in the particular case 
where q = 0 and r/o -2 = Z, Eqs. (24) and (25) give back the Balmer-Bohr formula 

E =(Z2/n2)eo with n = 1 , 2 , 3 , . . .  (27) 

for the bound states of a hydrogenlike atom. 

4. The Coulomb Potential 

At this stage, it is to be noticed that the approach developed in Sect. 3 leads to 
the discrete spectrum of Vq (Eq. (25)) but tells nothing about its continuous 
spectrum when there is any. Therefore, Results 1 and 2 demand further specifica- 
tions as far as questions concerning the continuous spectrum (when any) of the 
operator Hq = ( -h2/2 /x)A+ Vq are addressed. We now give an outline of the 
specifications it is possible to bring to Result 2 in the special case q = 0 and 
r/~r 2= Z and reserve more mathematical considerations (for any value of q) 
concerning Results 1 and 2 for a future publication in a journal of mathematical 
physics. 

By taking 70 -2= Z and q = 0, Eqs. (19)-(23) may be rewritten as 

h 2 [02f 02f'~ 
2 ,  ~-~u~+-~u22)-4E(u~ +u2)f =gZle2f, (28) 

h 2 [02g 02g'~ 
~-~u] +-~u]} -4E(u~ +u])g=eZ2e2g, (29) 

2tx 

Z, +Z2 = Z, (30) 
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(31) 
of of 

ul ouT- u2 ou--7, = 

ag Og 
u3 0u--44- u40u---~3 = yg" (32) 

At first glance, both Eqs. (28) and (29) correspond to the Schr6dinger equation 
for a two-dimensional isotropic harmonic oscillator. Indeed, care must be exer- 
cised according to whether as E = 0, E > 0, or E < 0. This yields the following 
results. 

Result 3. The Schr6dinger equation for a hydrogenlike atom with zero energy 
(E = 0, i.e. zero-energy case) is equivalent to the set of (i) a pair of  Schr6dinger 
equations 

h 2 [ OV 02f'~ 
~-~ ~ul2 +~u22) : 4 z ,  eef (33) 

h2 [O2g 02g\ 
~--~ ~u32 + ~--~u~) = 4Z2e2g (34) 

for two two-dimensional free-particle systems, with fixed energies 4Zle 2 and 
4Z2e 2, connected by Eq. (30) and (it) a pair or constraint conditions (Eqs. (31) 
and (32)). 

Result 4. The Schr6dinger equation for a hydrogenlike atom with positive energy 
(E > 0, i.e. continuous spectrum case) is equivalent to the set of  (i) a pair of  
Schr6dinger equations (Eqs. (28) and (29)) for two-dimensional isotropic har- 
monic oscillators, with repulsive potentials - 4E(u~ + u~) < 0 and - 4 E  (u32 + u~) < 0 
and fixed energies 4Zle 2 and 4Z2e 2, connected by Eq. (30) and (it) a pair of 
constraint conditions (Eqs. (31) and (32)). 

Result 5. The Schr6dinger equation for a hydrogenlike atom with negative energy 
( E < 0 ,  i.e. discrete spectrum case) is equivalent to the set of  (i) a pair of 
Schr6dinger equations (Eqs. (28) and (29)) for two two-dimensional isotropic 
harmonic oscillators, with attractive potentials -4E(u~  + u~) > 0 and -4E(u~  + 
u~) > 0 and fixed energies 4Zle 2 and 4Z2e 2, connected by Eq. (30) and (it) a pair 
of constraint conditions (Eqs. (31) and (32)). 

To convince the reader of the interest of  these results, let us show how Result 5 
allows to readily recover the Balmer-Bohr formula. Each isotropic harmonic 
oscillator with attractive potential has a frequency (v = co/2r such that 

- 4 E  = (1/2)/~to 2. (35) 

Further, the energies of the two oscillators under consideration are given by 

4Zle 2 = (nl + n2 + 1)hw, (36) 

422 e2 = (n 3 + n 4 + 1)hw, 
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where n~ = 0, 1, 2 , . . .  for a -- 1, 2, 3, 4. By combining Eqs. (30), (35), and (36) 
we get 

E = -2txZ2e4/hZ(n~ + 112 + !13 +/'/4 +2) 2. (37) 

The last step amounts to employ the constraint conditions (31) and (32) to prove 
that n~ + n2 = n3 + 114. This may be achieved by looking for solutions of the type 

f =  y" Cn1112~pn,(Ul)q~nz(Uz), 
11,.2 (38) 

g =  Z Cn3n4~Dn3(U3)@n4(U4), 
1'13114 

where ~..  (u~) denotes an eigenfunction of a one-dimensional harmonic oscillator 
and C.o., are expansion coefficients. Inserting Eq. (38) into Eqs. (31) and (32) 
leads to the following recursion formulas 

C.~_l,.2+~[nL(nz + 1)] 1/2- Cn,+l,112_,[(nl + 1) 112] l/z = .yCnw2, 
(39) 

Cn3-1.n4+l[rl3(n4+ 1)] 1/2- Cn3+l,n4-1[(113 + 1)n4] 1/2 ----- 'YCn3n4, 

which may be proved to admit a solution for n~ + n2 = n3 +/'/4. Thus, Eq. (37) reads 

E = - tzzZea/2h2n 2 (40) 

n = nl + n : + l  = n 3 + n 4 + l  = 1, 2, 3 , . . .  

in accordance with Eq. (27). Finally, we observe that the present treatment of 
the case E < 0 yields the known degeneracy of the energy level E - -  1/n z. As a 
matter of  fact, the degeneracy of the energy level (hi + n2 + 1 )hw = ( 113 + n 4 + 1)hto 
is n (see Eq. (40)) so that the degeneracy of the energy level E - - 1 / n  2 is 
n • n = n 2, i.e. just the Stone number. 

To close this section, it has to be mentioned that Result 5 was obtained [14] in 
a completely different way by finding and solving a boson realization of the 
algebra derived by Pauli, in the early days of quantum mechanics, for the angular 
momentum operator and the quantum-mechanical analog of the Laplace-Runge-  
Lenz vector. 

5. Related matters 

At this point, it may be worthwhile to consider two pending questions that could 
possibly pave the way for future investigations. 

The first question is devoted to group-theoretical considerations about the poten- 
tial Vq and the associated Hamiltonian Hq. We note that Vq ~ 1 / (x  z +y2 +z2)~/2_ 
q~ao/2(x ~ +y2) so that the potential Vq is invariant under the point symmetry 
group C ~ .  [The interaction term Vq presents the same symmetries as the diamag- 
netic term Ha ~ ( x Z + y 2 ) ~  2 for a hydrogenlike atom under the influence of a 
magnetic field ~.] Consequently, according to a famous theorem by Wigner, we 
may expect that the energy levels of Hq should be at least one-fold or two-fold 
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degenerate since C~v has only one- and two-dimensional irreducible representa- 
tions. It is clear however that a higher degeneracy can occur in the discrete 
spectrum of  Hq. In other words, some accidental degeneracies may appear besides 
the essential degeneracies (of degree 1 and 2) afforded by the symmetry group 
C~v. The appearance of  these accidental degeneracies might be an argument for 
guessing the relevance of a larger symmetry group in the study of  the spectrum 
of Hq. Indeed, this point must be examined with attention because we know that 
(as a still open problem of theoretical physics): Given a (normal) operator H 
invariant under a group G, the occurrence of accidental degeneracies besides the 
essential degeneracies afforded by G does not necessarily imply the existence of 
a larger group G'(G'D G) for which the degeneracies of H are essential (see, 
for instance, Ref. [23]). For the Hamiltonian Hq, we have Gq =- C~v and an answer 
to the problem of finding a group G~ exists in some cases. As a matter of fact, 
the Lie algebras of the groups S04 (the special orthogonal group in 4 dimensions, 
isomorphic to the four-dimensional proper  rotation group), S03,1 (the special 
pseudo-orthogonal group in 3 + 1 dimensions, isomorphic to the restricted Lorentz 
group), and E 3 (the rotation-translation Euclidean group in 3 dimensions, isomor- 
phic to the restricted Galilean group) are of  special interest for the discrete 
spectrum, continuous spectrum, and zero-energy cases of H0 with ~7o -2 = Z, respec- 
tively (cf. for example, Refs. [14-16]). Hence, we have G'o-S04, $03,1, o r  E 3 

according as we deal with the discrete spectrum, continuous spectrum, or zero- 
energy case of Ho, respectively. We may think of this result as being an encourage- 
ment to examine the very much involved problem of a group Gq for Hq(q ~ O) 
and we hope to reach some (interesting) conclusions in future. 

The second question concerns a captivating relation between the Hartmann 
potential problem and the Kratzer [24] and Sommerfeld [25] potential problems. 
Let us consider the three-dimensional potential 

% = - 2 a D ; - q  . (41) 

The case q = 1 corresponds to the Kratzer potential, the case 2aD= Ze 2 and 
qaZD > 0 to the Sommerfeld potential, and the case 2aD = Ze 2 and q = 0 to the 
Coulomb potential. Needless to say that the study conducted in Sect. 3 for the 
potential Vq can be applied to the potential Wq too. We give here only the two 
central results of such a study. 

Result 6. The Kustaanheimo-Stiefel transformation permits to convert the 
Schr6dinger equation 

2/x 1 a 
At~ + ~  [ E + 2aD( r -  q~r2) ] O = O (42) 

for the potential Wq into the set of (i) the Schr6dinger equation 

Au~ + 2-~[8aD +4E(u2+u~+u~+u 2) -4qa2D(u~+u~+u2+u2)-l]~b =0  
h 

(43) 
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for a four-dimensional isotropic harmonic oscillator with inverse-square potential 
and (ii) a constraint condition 

00 0q, 0t0 0 0  
U 1 - -  - -  U 2 - -  - -  U 3 - " : - -  "JI- U 4 - - " : ' - '  = 0 .  

OU2 3U 1 3U 4 3U 3 
(44) 

We note the analogy between Eqs. (43) and (19) or (20). In fact, Eqs. (19) or 
(20) and (43) formally bear the same form. The main difference is that Eq. (43) 
is concerned with a motion in a four-dimensional space while Eqs. (19) and (20) 
with a motion in a two-dimensional space. This type of connection can be made 
even sharper owing to the following result. 

R e s u l t  7. The  L e v i - C i v i t a  t r a n s f o r m a t i o n  (x  = Ul2 _ u2,2 y = 2u l  u2) pe rmi t s  to con-  

ver t  the  t w o - d i m e n s i o n a l  S c h r 6 d i n g e r  e q u a t i o n  for  a p o t e n t i a l  o f  type  Wq with  

r = ( x  2 + y 2 )  J/2 i n to  a n  e q u a t i o n  h a v i n g  exac t ly  the  s a m e  fo rm as Eqs.  (19) a n d  (20). 

I t  is o n e  o f  the  f o r t h c o m i n g  a s s i g n m e n t s  o f  the  au tho r s  to fu r the r  e l abo ra t e  o n  
the  la t te r  two resul ts  a n d  the  a b o v e - m e n t i o n e d  p r o b l e m  o f  the  g r o u p  Gq. 

Acknowledgements. Thanks are due to Dr. D. Schuch for mentioning the work in Ref. [4] to the 
attention of the authors. 
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